MET signaling in GABAergic neuronal precursors of the medial ganglionic eminence restricts GDNF activity in cells that express GFRα1 and a new transmembrane receptor partner.
نویسندگان
چکیده
GDNF (glial cell line-derived neurotrophic factor) promotes the differentiation and migration of GABAergic neuronal precursors of the medial ganglionic eminence (MGE). These functions are dependent on the GPI-anchored receptor GFRα1, but independent of its two known transmembrane receptor partners RET and NCAM. Here we show that soluble GFRα1 is also able to promote differentiation and migration of GABAergic MGE neurons. These activities require endogenous production of GDNF. Although GDNF responsiveness is abolished in Gfra1(-/-) neurons, it can be restored upon addition of soluble GFRα1, a result that is only compatible with the existence of a previously unknown transmembrane signaling partner for the GDNF-GFRα1 complex in GABAergic neurons. The roles of two candidate transmembrane receptors previously implicated in GABAergic interneuron development--MET, a receptor for hepatocyte growth factor (HGF), and ErbB4, the neuregulin receptor--were examined. GDNF did not induce the activation of either receptor, nor did inhibition of MET or ErbB4 impair GDNF activity in GABAergic MGE neurons. Unexpectedly, however, inhibition of MET or HGF per se promoted neuronal differentiation and migration and enhanced the activity of GDNF on MGE neurons. These effects were dependent on endogenous GDNF and GFRα1, suggesting that MET signaling negatively regulates GDNF activity in the MGE. In agreement with this, Met mutant MGE neurons showed enhanced responses to GDNF and inhibition of MET or HGF increased Gfra1 mRNA expression in MGE cells. In vivo, expression of MET and GFRα1 overlapped in the MGE, and a loss-of-function mutation in Met increased Gfra1 expression in this region. Together, these observations demonstrate the existence of a novel transmembrane receptor partner for the GDNF-GFRα1 complex and uncover an unexpected interplay between GDNF-GFRα1 and HGF-MET signaling in the early diversification of cortical GABAergic interneuron subtypes.
منابع مشابه
GDNF and GFRα1 Promote Differentiation and Tangential Migration of Cortical GABAergic Neurons
Cortical GABAergic neurons are generated in the ventral telencephalon and migrate dorsally into the cortex following a tangential path. GDNF signaling via GFR 1 was found to promote the differentiation of ventral precursors into GABAergic cells, enhancing their neuronal morphology and motility. GDNF stimulated axonal growth in cortical GABAergic neurons and acted as a potent chemoattractant of ...
متن کاملSyndecan-3 gets the message
Syndecan-3 gets the message B espalov et al. catch several growth factors that are essential for brain development being unfaithful. The researchers show that the molecules consort with a second receptor. Glial cell line–derived neurotrophic factor (GDNF) and three related growth factors make up the GDNF family ligands, or GFLs. The molecules are movers and shapers in the nervous system. GFLs n...
متن کاملGDNF and GFRalpha1 promote differentiation and tangential migration of cortical GABAergic neurons.
Cortical GABAergic neurons are generated in the ventral telencephalon and migrate dorsally into the cortex following a tangential path. GDNF signaling via GFRalpha1 was found to promote the differentiation of ventral precursors into GABAergic cells, enhancing their neuronal morphology and motility. GDNF stimulated axonal growth in cortical GABAergic neurons and acted as a potent chemoattractant...
متن کاملP50: Selective HCRTR2 Antagonism Increases Embryonic Mouse Cortex Neural Stem Progenitor Cells Proliferation
In multiple sclerosis Oligodendrocytes are obliterated by the immune system. neural stem/ progenitor cells (NS/P Cs) have the capacity to differentiate into mature myelinating oligodendrocytes. In embryonic mouse cortex oligodendrocyte progenitor cells (OPCs) are more abundant than the ganglionic eminence. Doing gene set enrichment analysis using DAVID and Panther websites it was shown that Gpr...
متن کاملNeurobiology of Disease GABAergic Precursor Transplantation into the Prefrontal Cortex Prevents Phencyclidine-Induced Cognitive Deficits
Phencyclidine (PCP) is a noncompetitive NMDA receptor antagonist, and it induces schizophreniform cognitive deficits in healthy humans and similar cognitive deficits in rodents. Although the PCP-induced cognitive deficits appear to be accompanied and possibly caused by dysfunction of GABAergic inhibitory interneurons in the prefrontal cortex (PFC), the potential benefit(s) of GABAergic interneu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 124 Pt 16 شماره
صفحات -
تاریخ انتشار 2011